Равномерный и показательный законы распределения непрерывной случайной величины. Экспоненциальное распределение

Файл примера

Рассмотрим Экспоненциальное распределение, вычислим его математическое ожидание, дисперсию, медиану. С помощью функции MS EXCEL ЭКСП.РАСП() построим графики функции распределения и плотности вероятности. Сгенерируем массив случайных чисел и произведем оценку параметра распределения.

(англ. Exponential distribution ) часто используется для расчета времени ожидания между случайными событиями. Ниже описаны ситуации, когда возможно применение Экспоненциального распределения :

  • Промежутки времени между появлением посетителей в кафе;
  • Промежутки времени нормальной работы оборудования между появлением неисправностей (неисправности возникают из-за случайных внешних влияний, а не по причине износа, см. );
  • Затраты времени на обслуживание одного покупателя.

Генерация случайных чисел

Для генерирования массива чисел, распределенных по экспоненциальному закону , можно использовать формулу =-LN(СЛЧИС())/ λ

Функция СЛЧИС() генерирует от 0 до 1, что как раз соответствует диапазону изменения вероятности (см. файл примера лист Генерация ).

Если случайные числа содержатся в диапазоне B14:B213 , то оценку параметра экспоненциального распределения λ можно сделать с использованием формулы =1/СРЗНАЧ(B14:B213) .

Задачи

Экспоненциальное распределение широко используется в такой дисциплине как Техника обеспечения надежности (Reliability Engineering). Параметр λ называется интенсивность отказов , а 1/ λ среднее время до отказа .

Предположим, что электронный компонент некой системы имеет срок полезного использования, описываемый Экспоненциальным распределением с интенсивностью отказа равной 10^(-3) в час, таким образом, λ = 10^(-3). Среднее время до отказа равно 1000 часов. Для того чтобы подсчитать вероятность, что компонент выйдет из строя за Среднее время до отказа, то нужно записать формулу:

Т.е. результат не зависит от параметра λ .

В MS EXCEL решение выглядит так: =ЭКСП.РАСП(10^3; 10^(-3); ИСТИНА)

Задача . Среднее время до отказа некого компонента равно 40 часов. Найти вероятность, что компонент откажет между 20 и 30 часами работы. =ЭКСП.РАСП(30; 1/40; ИСТИНА)- ЭКСП.РАСП(20; 1/40; ИСТИНА)

СОВЕТ : О других распределениях MS EXCEL можно прочитать в статье .

Экспоненциальное (показательное) распределение

Рассмотрим семейство распределений, широко используемое при принятии управленческих решений и других прикладных исследованиях - семейство экспоненциальных распределений. Проанализируем вероятностную!! модель, приводящую к таким распределениям. Для этого рассмотрим «поток событий», т.е. последовательность событий, происходящих одно за другим в какие-то моменты времени. Примерами могут служить: время безотказной работы компьютерной системы, интервал между последовательными поступлениями автомобилей к стон-линии перекрестка, поток обращений клиентов в отделение банка; поток покупателей, обращающихся за товарами и услугами; поток вызовов на телефонной станции; поток отказов оборудования в технологической цепочке и т.д.

В теории потоков событий справедлива теорема суммировании потоков событий. Суммарный поток состоит из большого количества независимых частных потоков, ни один из которых не оказывает преобладающего влияния на суммарный поток. Так, поток вызовов, поступающих на телефонную станцию, состоит из большого числа независимых потоков вызовов, исходящих от отдельных абонентов. В случае, когда характеристики потоков не зависят от времени, суммарный поток полностью описывается одним числом X - интенсивностью потока. Для суммарного потока функция распределения случайной величины X - длины промежутка времени между последовательными событиями имеет следующий вид:

Это распределение называется экспоненциальным (показательным) распределением. В данную функцию иногда вводят параметр сдвига с.

Экспоненциальное распределение имеет только один параметр, который и определяет его характеристики. Плотность распределения имеет следующий вид:

где X - постоянная положительная величина.

График функции /(х) представлен на рис. 9.12.

Рис. 9.12.

На рис. 9.13 представлен график плотности экспоненциального распределения при разных параметрах X.

Экспоненциальное распределение характеризует распределение времени между независимыми событиям, появляющимися с постоянной интенсивностью. Экспоненциальный закон характерен для распределения случайных величин, изменение которых обусловлено влиянием какого-то доминирующего фактора. В теории надежности это распределение описывает распределение внезапных отказов, так как последние являются редкими событиями. Экспоненциальное распределение служит также для описания


Рис. 9.13. Плотность экспоненциального распределения при разных параметрах X

наработки сложных систем, прошедших период приработки, и для описания времени безотказной работы системы с большим числом последовательно соединенных элементов, каждый из которых не оказывает большого влияния на отказ системы.

Теоретические частоты для экспоненциального закона распределения определяют по формуле

где N - объем совокупности; 1г к - длина интервала; е - основание натурального логарифма; X - условные отклонения середин классов:

Рассмотрим выравнивание эмпирического распределения (табл. 9.4) по экспоненциальному закону.

Таблица 9.4

Эмпирические частоты для выравнивания распределения по экспоненциальному закону

Имеем N = 160; Ь к = 41; х = 54,59. Расчет величин условных отклонений середин классов, вспомогательных величин е _1 и теоретических частот произведен в табл. 9.5.

Таблица 95

Выравнивание эмпирических частот по экспоненциальному закону

Эмпирические данные, х

Эмпирическая частота, т

Теоретические частоты

Эмпирические и теоретические частоты экспоненциального распределения изобразим графически на рис. 9.14.

Показательное распределение представляет собой частный случай распределения Вейбулла - Гнеденко (соответствующий значению параметра формы b = 1).


где λ – постоянная положительная величина.

Из выражения (3.1), следует, чтопоказательное распределение определяется одним параметром λ.

Эта особенность показательного распределения указывает на его преимущество по сравнению с распределениями , зависящими от боль­шего числа параметров. Обычно параметры неизвестны и приходится находить их оценки (приближенные значе­ния) разумеется, проще оценить один параметр, чем два или три и т. д . Примером непрерывной случайной вели­чины, распределенной по показательному закону , может служить время между появлениями двух последователь­ных событий простейшего потока.

Найдем функцию распределения показательного закона .

Итак

Графики плотности и функции распределения показа­тельного закона изображены на рис. 3.1.


Учитывая, что получим:

Значения функции можно находить по таблице.

Числовые характеристики показательного распределения

Пусть непрерывная случайная величина Χ рас­пределена по показательному закону

Найдем математическое ожидание , используя формулу её вычисления для непрерывной случайной величины:


Следовательно:

Найдем среднее квадратическое отклонение , для чего извлечем квадратный корень из дисперсии:

Сравнивая (3.4), (3.5) и (3.6), видно, что

т. е. математическое ожидание и среднее квадратическое отклонение показательного распределения равны между собой.

Показательное распределение широко применяетсяв различных приложениях финансовых и технических задач, например, в теории надежности.



4. Распределение «хи-квадрат» и распределение Стьюдента.

4.1 Распределение «хи-квадрат» (- распределение)

Пусть Χ i (ί = 1, 2, ..., n)-нормальные незави­симые случайные величины , причем математическое ожи­даниекаждой из нихравно нулю , а среднее квадратическое отклонение - единице .

Тогдасумма квадратов этих величин

распределена по закону с степенями свободы , если же эти величины связаны одним линейным соотношением, например , то число степеней свободы

Распределение хи-квадрат нашло широкое применение в математической статистике.

Плотность этого распределения


где - гамма-функция, в частности .

Отсюда видно, чтораспределение хи-квадрат опре­деляется одним параметром - числом степеней свободы k.

С увеличением числа степеней свободыраспределение хи-квадрат медленно приближается к нормальному.

Хи-квадрат распределение получается, если в законе распределения Эрланга принять λ = ½ и k = n /2 – 1.

Математическое ожидание и дисперсия случайной величины, имеющей хи-квадрат распределение, определяются простыми формулами, которые приведем без вывода:

Из формулы следует, что при хи-квадрат распределение совпадает с экспоненциальным распределением при λ = ½ .

Интегральная функция распределения при хи-квадрат распределенииопределяетсячерез специальные неполные табулированные гамма-функции

На рис.4.1. приведены графики плотности вероятности и функции распределения случайной величины, имеющей хи-квадрат распределениепри n = 4, 6, 10.

Рис.4.1. а )Графики плотности вероятности при хи-квадрат распределении


Рис.4.1. б)Графики функции распределения при хи-квадрат распределении

4.2 Распределение Стьюдента

Пусть Z – нормальная случайная величина, причём

а V – независимая от Z величина, которая распределена по закону хи-квадрат с k степенями свободы.Тогда величина:


имеет распределение, которое называют t -распределением или распределением Стьюдента (псевдоним английского статистика В. Госсета),

с k = n - 1 степенями свободы (n - объём статистической выборки при решении задач статистки).

Итак , отношение нормированной нормальной величинык квадратному корню из независимой случайной вели­чины, распределенной по закону «хи квадрат» с k степе­нями свободы , деленной на k, распределено по закону Стьюдента с k степенями свободы.

Плотность распределения Стьюдента:

Случайная величина имеет равномерное распределение , если вероятность того, что она принимает любое значение в интервале, ограниченном минимальным числом а и максимальным числом b , постоянна. Поскольку график плотности этого распределения имеет вид прямоугольника, равномерное распределение иногда называют прямоугольным (см. панель Б на рис. 1).

Рис. 1. Три непрерывных распределения

Скачать заметку в формате или , примеры в формате

Функция плотности равномерного распределения задается формулой:

где а - минимальное значение переменной X , b - максимальное значение переменной X .

Математическое ожидание равномерного распределения:

(2) μ = (а + b ) / 2

Дисперсия равномерного распределения:

(3) σ 2 = (b a ) 2 / 12

Стандартное отклонение равномерного распределения:

Чаще всего равномерное распределение используется для выбора случайных чисел. При осуществлении простого случайного выбора предполагается, что каждое число извлекается из генеральной совокупности, равномерно распределенной в интервале от 0 до 1. Вычислим вероятность извлечь случайное число, превышающее 0,1 и меньше 0,3.

График функции плотности равномерного распределения для а = 0 и b = 1 изображен на рис. 2. Общая площадь прямоугольника, ограниченного этой функцией, равна единице. Следовательно, этот график удовлетворяет требованию, согласно которому, площадь фигуры, ограниченной графиком плотности любого распределения, должна равняться единице. Площадь прямоугольника, заключенная между числами 0,1 и 0,3, равна произведению длин его сторон, т.е. 0,2 х 1 = 0,2. Итак, Р(0,1 < X < 0,3) = 0,2 х 1 = 0,2.

Рис. 2. График плотности равномерного распределения; вычисление вероятности Р(0,1 < X < 0,3) для равномерного распределения при а = 0 и b = 1

Математическое ожидание, дисперсия и стандартное отклонение равномерного распределения при а = 0 и b = 1 вычисляются следующим образом:

Рассмотрим пример. Предположим, что моменты отказов устройства для контроля за чистотой воздуха равномерно распределены в течение суток.

  1. В некий день светлое время суток наступает в 5:55 и заканчиваться в 19:38. Какова вероятность того, что отказ оборудования устройства произойдет в течение светлого времени суток?
  2. Допустим, что с 22:00 до 5:00 устройство переходит в режим пониженного энергопотребления. Какова вероятность того, что отказ произойдет в указанный период времени?
  3. Предположим, что в состав устройства входит процессор, каждый час осуществляющий проверку работоспособности оборудования. Какова вероятность того, что отказ будет обнаружен не позднее, чем через 10 мин?
  4. Предположим, что в состав устройства входит процессор, каждый час осуществляющий проверку работоспособности оборудования. Какова вероятность того, что отказ будет обнаружен не раньше, чем через 40 мин?

Решение. 1. Поскольку в условии задачи сказано, что моменты отказов устройства равномерно распределены в течение суток, вероятность отказа в светлое время суток – есть доля этого времени суток. Р (отказа в светлое время суток) = 19:38 – 5:55 = 57,2%. Вычисления см. приложенный Excel-файл. Если представить разность окончания и начала светлого времени суток в процентном формате, то получим ответ – 57,2%. Хитрость заключается в том, что в Excel сутки – это единица, один час – 1/24, таким образом интервал времени меньше суток будет составлять процентную часть этих суток.

2. Р (отказа с 22:00 до 5:00) = 2:99 + 5:00 = 29,2%.

3. Р (обнаружения отказа не позднее, чем через 10 мин) = 10 / 60 = 16,7%

4. Р (обнаружения отказа не раньше, чем через 40 мин) = (60 – 40) / 60 = 33,3%

Экспоненциальное распределение

Экспоненциальное распределение является непрерывным, имеет положительную асимметрию и изменяется от нуля до плюс бесконечности (см. панель В на рис. 1). Экспоненциальное распределение оказывается весьма полезным в деловых приложениях, особенно при моделировании производства и систем массового обслуживания. Оно широко используется в теории расписаний (очередей) для моделирования промежутков времени между двумя запросами, которые могут представлять собой приход клиента в банк или ресторан быстрого обслуживания, поступление пациента в больницу, а также посещение Web-сайта.

Экспоненциальное распределение зависит только от одного параметра, который обозначается буквой λ и представляет собой среднее количество запросов, поступающих в систему за единицу времени. Величина 1/λ равна среднему промежутку времени, прошедшего между двумя последовательными запросами. Например, если в систему в среднем поступает 4 запроса в минуту, т.е. λ = 4, то среднее время, прошедшее между двумя последовательными запросами, равно 1/λ = 0,25 мин, или 15 с. Вероятность того, что следующий запрос поступит раньше, чем через X единиц времени, определяется по формуле (5).

(5) Р (время поступления запроса < X ) = 1 – e –λ x

где е - основание натурального логарифма, равное 2,71828, λ – среднее количество запросов, поступающих в систему за единицу времени, X – значение непрерывной величины, 0 < X < ∞.

Проиллюстрируем применение экспоненциального распределения примером 2. Допустим, что в отделение банка приходят 20 клиентов в час. Предположим, что в банк уже пришел один клиент. Какова вероятность того, что следующий клиент придет в течение 6 мин? В данном случае λ = 20, Х= 0,1 (6 мин = 0,1 ч). Используя формулу (5), получаем:

Р(время прихода второго клиента < 0,1) = 1 – е –20*0,1 = 0,8647

Таким образом, вероятность, что следующий клиент придет в течение 6 мин, равна 86,47%. Экспоненциальное распределение можно вычислить с помощью функции Excel =ЭКСП.РАСП() (рис. 3).

Рис. 3. Расчет экспоненциального распределения с помощью функции =ЭКСП.РАСП()

Используются материалы книги Левин и др. Статистика для менеджеров. – М.: Вильямс, 2004. – с. 379–383

Экспоненциальный закон распределения называемый также основным законом надежности, часто используют для прогнозирования надежности в период нормальной эксплуатации изделий, когда постепенные отказы еще не проявились и надежность характеризуется внезапными отказами. Эти отказы вызываются неблагоприятным стечением многих обстоятельств и поэтому имеют постоянную интенсивность. Экспоненциальное распределение находит довольно широкое применение в теории массового обслуживания, описывает распределение наработки на отказ сложных изделий, время безотказной работы элементов радиоэлектронной аппаратуры.

Приведем примеры неблагоприятного сочетания условий работы деталей машин, вызывающих их внезапный отказ. Для зубчатой передачи это может быть действием максимальной нагрузки на наиболее слабый зуб при его зацеплении; для элементов радиоэлектронной аппаратуры - превышение допустимого тока или температурного режима.

Плотность распределения экспоненциального закона (рис. 1) описывается соотношением

f (x ) = λe −λ x ; (3)

функция распределения этого закона - соотношением

F (x ) = 1− e −λ x ; (4)

функция надежности

P (x ) = 1− F (x ) = e −λ x ; (5)

математическое ожидание случайной величины Х

дисперсия случайной величины Х

(7)

Экспоненциальный закон в теории надежности нашел широкое применение, так как он прост для практического использования. Почти все задачи, решаемые в теории надежности, при использовании экспоненциального закона оказываются намного проще, чем при использовании других законов распределения. Основная причина такого упрощения состоит в том, что при экспоненциальном законе вероятность безотказной работы зависит только от длительности интервала и не зависит от времени предшествующей работы.

Риc. 1. График плотности экспоненциального распределения

Пример 2. По данным эксплуатации генератора установлено, что наработка на отказ подчиняется экспоненциальному закону с параметром λ=2*10 -5 ч -1 . Найти вероятность безотказной работы за время t =100 ч. Определить математическое ожидание наработки на отказ.

Р е ш е н и е. Для определения вероятности безотказной работы воспользуемся формулой (5), в соответствии с которой

Математическое ожидание наработки на отказ равно